

63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

3534 Methylation Panel - Plasma & Whole Blood

METHYLATION PANEL

Patient:		Page 2						
3534 Methylation Panel - Plas <i>Methodology: LCMSMS & Colorimetric</i>	ma & Who Results	ole Bl	ood 1st	QUI 2nd	NTILE DISTR	RIBUTION 4th	5th	Reference Range
	micromol/L	-	•	•	1		1 1	Kelerence Kange
		Me	thylatior	n Capaci	ity			
Ratios								
1. Methylation Index (SAM/SAH Ratio)	3.3		├ ◆	-	-			2.2-6.4
2. Methylation Balance Ratio	1.04		├ ◆	+	+			1.03-1.20
3. Met/Sulf Balance Ratio	0.63			+			+	0.55-0.64
4. Betaine/Choline Ratio	5.2					•		2.6-7.7
Methyl Group Donors								
5. S-adenosylmethionine (SAM)	137						+	65-150 nanomol/L
6. Methionine	30				+			23-38
7. Choline	12.0							5.2-13.0
8. Betaine	62							21-71
9. Serine	125					•		91-161
Methyl Group Metabolites								
10. S-adenosylhomocysteine (SAH)	41						+	16-41
11. Homocysteine †	12.0	н					•	• 3.7-10.4
12. Dimethylglycine (DMG)	5.0			+	-			1.6-5.0
13. Sarcosine	6,485				-		+	3,670-6,743
14. Glycine	317			+	-		•	181-440
Transsulfuration Metabolites								
15. Cystathionine	321							74-369 nanomol/L
16. Cyst(e)ine	439	н	-	+			+ +	271-392
17. Taurine	104			-			•	50-139
18. Glutathione †	836				*			>=669

†These results are not represented by quintile values.

Tests were developed and their performance characteristics determined by Genova Diagnostics. Unless otherwise noted with •, the assays have not been cleared by the U.S. Food and Drug Administration.

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA S		/ / 2 A		Potoino homoovotoino 6 mothultronoforoas			
BF	INT G/4	4ZA		Betaine-nomocysteine S-metnyltransferase Betaine-homocysteine methyltransferase (BHMT) is the enzyme responsible for remethylation of			
Yo Allele 1	ur Genot	type: Allele	2	homocysteine via an alternate pathway using betaine as a methyl donor. [§] BHMT acts as a backup pathway to maintain SAM levels and is expressed primarily in the liver and kidney. [§]			
G		G		Health Implications			
Wild Type - Wild Type - Potential Impact: No Upregulation			De -	• The BHMT G742A polymorphism results in increased BHMT activity (also referred to as "upregulation"). Upregulation of BHMT may lead to lower levels of homocysteine as well as less dependency on folate and vitamin B-12 as methyl donors.			
Genotypes G G G A A A	Amino Acid Arg Arg Arg GIn GIn GIn			 Because this BHMT polymorphism results in increased activity, research suggests that this SNP is protective against many of the clinical conditions related to elevated homocysteine and folate deficiency. This G742A SNP has been associated with reduced all-cause mortality in breast cancer and decreased birth defect risk in some studies.¹⁻⁴ 			
Amino Acid Position: 239 Arginine to Glutamine $CGA \rightarrow CAA$ DNA Position: 821 \downarrow GAGGCTGCC C(Gor A)ACTGAAAGCT			AGCT	 However, the overuse of choline as a substrate for methylation may have a negative metabolic consequence, because choline is needed for many other processes in the body. For example, SNPs for this enzyme may result in decreased choline availability for the PEMT pathway, which is responsible for acetylcholine and phospholipid synthesis.⁵ Abnormal choline metabolism may be associated with congenital abnormalities such as Down syndrome and neural tube defects.⁷ These risks may be exacerbated by homozygous positive findings combined with low folate intake. 			
				Clinical Considerations			
Rs Number: rs3733890 Location: Chromosome 5q14.1				 Check choline and betaine levels; consider supplementation if applicable. Ensure adequate dietary choline intake. 			
				 Assess likelihood of zinc insufficiency; evaluate plasma zinc and zinc/copper ratio. 			
* Frequency:				Assess SAM/SAH ratio and Methyl Balance Ratio to rule out excessive SAM			
Population Category	GG	GA	AA	production.			
EUR	48%	41%	11%	References			
EAS	52%	41%	7%	 Boyles AL, et al. <i>Environ Health Perspect.</i> 2006;114(10):1547-1552. Shaw GM, et al. <i>BMC Med Gen.</i> 2009;10:49. 			
AFR	55%	41%	4%	 Mostowska A, et al. J Med Gen. 2010;47(12):809-815. da Costa KA, et al. FASEB J 2014:28(7):2970-2978. 			
AMR	32%	52%	16%	5. Obeid R. <i>Nutrients</i> . 2013;5(9):3481. 6. Sunder SL et al. <i>Arch Richard Biophys</i> 1997;345(1):171.174			
SAS	52%	43%	5%	 Jaiswal SK, et al. <i>Eur J Clin Nutr.</i> 2017;71(1):45-50. 			
*Population freque EUR (European): EAS (East Asian) AFR (African): Ni	ncy data is Americans :Han Chine gerian, Ker	s from 1000 s with Northe ese (Beijing nyan, Gamb	GENOME ern and Wo), Japanes ian, Mend	S project as sourced from NCBI dbSNP. The population categories are listed below: estern European Ancestry, Toscani, Finnish, British, Spanish e (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) i (Sierra Leone), African American, African Caribbean			

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

Methodology: DNA Sequencing

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

GN	GNMT C1289T			Glycine N-methyltransferase Glycine n-methyltransferase (GNMT) is an enzyme that plays a critical role in the disposal of excess s-adenosylmethionine (SAM), which is the body's main methyl donor. GNMT removes methyl groups from SAM by conjugating them with glycine to form the byproduct sarcosine				
Your Genotype:		0						
Allele I		Allele	2					
С		T		Health Implications				
Wild Type -		Variant	+	• GNMT acts as a SAM/SAH butter by disposing excess SAM through conjugation with glycine. This process is downregulated in response to low 5-MTHF and SAM				
Pot Upi	ential Impa 'egulat	act: ion		levels. Increased GNMT activity could potentially lead to increased sarcosine levels, which has been associated with prostate cancer risk in several studies. ¹⁻³ [◦] However, in one study of Taiwanese men (where GNMT polymorphism is less common), GNMT polymorphism showed a protective effect on prostate cancer risk, which highlights the differences in SNP frequencies in different populations. ⁴				
Genotypes		Amino A Non-Co	cid ding					
C T T T		Non-Coding Non-Coding		 The C1289T polymorphism results in upregulation of the GNMT enzyme which increases the rate of SAM disposal and sarcosine creation. This may limit SAM availability for methylation reactions and reduce its regulatory effects on the 				
Amino Acid Position: Untranslated Region DNA Position: 4962 SNP ↓ AGTGCTTATG (C or T) TTTAAGTGCG			d Region	 GNMT is also involved in detoxification and antioxidant pathways. This may play a role in the increased cancer risk demonstrated in homozygous negative individuals and in animal models. GNMT SNPs have been shown to play a role in elevating plasma homocysteine, particularly with folate-restriction.⁵ Clinical Considerations Evaluate methylation balance, SAM/SAH, and sarcosine levels. Ensure adequate levels of glycine, as this is a substrate for the reaction catalyzed by GNMT and is also involved in glutathione synthesis. 				
			GCG					
Rs Number: rs10948059								
Location: Chron	nosome 6	3p21.1						
Frequency:								
Population Category	сс	СТ	тт					
EUR	29%	47%	24%					
EAS	70%	28%	2%	Pafarancas				
AFR	23%	43%	34%	1. Lucarelli G, et al. <i>Prostate</i> . 2012;72(15):1611-1621.				
AMR	50%	44%	6%	 Jentzhink F, et al. 2010;30(1):12-10. Sreekumar A, et al. Nature. 2009;457(7231):910. Observation A. et al. Place and 00(5): 2010;200 				
646	260/	170/	470/	4. Chen M, et al. <i>PloS one</i> . 2014;9(5):e94683.				

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

lethodology: DNA S	Sequencing	7						
MAT	MAT1A D18777A			Methionine adenosyltransferase				
Yo Allele 1	ur Genot	ype: Allele	2	Methionine adenosyltransferase (MAT) is the enzyme that catalyzes the conversion of methionine into the body's main methyl donor, s-adenosylmethionine (SAM). This enzyme requires magnesium as a cofactor and is downregulated by oxidative stress, such as alcohol and free radical damage.				
G		A		Health Implications				
		teste e ser	Ø.	• Methionine adenosyltransferase (MAT) activity is critical to methylation. There are				
Wild Type -		Variant	+	a few MAT1A genetic polymorphisms studied that lead to MAT1A deficiency (also				
Pot	ential Impa	act:		known as wuuu s Disease), but this condition is extremely rare.				
Dow	nregul	ation		• The D18777A SNP is fairly common in the human population and has associations				
Genotypes		Amino A	vcid	with cardiovascular disease risk. ¹				
GG		Non-Co	ding	• Although literature is seant on this mutation, some studies have demonstrated				
GA		Non-Co	ding	higher homocysteine levels with this polymorphism. ² Another study also				
AA		Non-Co	ding	demonstrated that this correlation was modulated by overall dietary fat intake. ³				
Amino Acid Position: Untranslated Region			d Region	 Another study demonstrated that the D18777A SNP was associated with higher rates of stroke independent of homocysteine levels, which was hypothesized to be due to methylation activity impairment.¹ 				
				Clinical Considerations				
DNA Position: 23777 SNP ♥ GCTTTTCTCT (GorA)TAATGTGTCA				• Evaluate methylation balance, SAM/SAH, and sarcosine levels.				
			TCA	• Reduce levels of oxidative stress, such as free radical exposure and alcohol intake as these can further impair the MAT1A enzyme.				
				• Ensure adequate levels of MAT1A cofactors such as magnesium and potassium. Consider testing RBC magnesium an potassium.				
Rs Number: rs3851059 Location: Chromosome 10q22.3				 Patients with this polymorphism may have higher homocysteine in response to dietary fat intake than those without.³ Monitor advanced cardiovascular risk markers if clinically appropriate. 				
_								
Frequency:								
Population Category	GG	G A	AA					
EUR	50%	43%	7%					
EAS	36%	48%	16%					
AFR	62%	34%	4%					
AMR	52%	40%	8%	References 1. Lai CQ, et al. Am J Clin Nutr. 2010;91(5):1377-1386.				
SAS	42%	45%	13%	 Beagle B, et al. J Nutr. 2005;135(12):2780-2785. Huang T, et al. Nutr Metab Cardiovasc Dis. 2012;22(4):362-368. 				
*Population freque EUR (European):	ncy data is Americans	from 1000 with Northe	GENOME	S project as sourced from NCBI dbSNP. The population categories are listed below: estern European Ancestry, Toscani, Finnish, British, Spanish				

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA S	Sequencing	1						
М	R A275	6G		Methionine synthase				
Your Genotype: Allele 1 Allele 2			2	Methionine synthase (MS/MTR) is responsible for converting homocysteine back into methionine by using 5-MTHF as a methyl donor. This reaction requires zinc and active B-12 (methylcobalamin) as cofactors and is the main pathway responsible for homocysteine recycling in every cell.				
Α		A		Health Implications				
Wild Type -	•	Wild Ty	pe -	 The A2756G polymorphism is the most common MTR SNP discussed in the literature. 				
Pot No U	tential Impa	act: Iation		 It is generally accepted that this SNP upregulates the MTR enzyme leading to lower homocysteine levels.¹ 				
Genotypes A A A G G G		Amino A Asp A Asp G Gly Gl	kcid sp ily ly	 The impact of this SNP on global DNA methylation is debated in the literature, however clinical associations with the A2756G polymorphism include congenital birth defects such as spina bifida, cleft lip/palate, and cardiac defects.²⁻⁴ One hypothesis is that as the MTR enzyme is at the junction between the folate pathways with the spinal birth and the spinal birth defects. 				
Amino Acid Position: 919 Aspartate to Glvcine				pathway and the methylation pathway, upregulation of MTR may shunt folate groups to the methylation cycle at the expense of other folate needs, such as purine/nucleotide synthesis.				
$GAC \rightarrow GGC$ DNA Position: 3179				 Several epidemiological studies on MTR polymorphism have demonstrated risk associations with various cancers, evidence remains controversial.⁵⁻⁷ Many of these risk associations appear to be population/ethnicity specific, which could be due to gene-gene interactions with MTRR and MTHFR. 				
			TGAG	Clinical Considerations				
				 Compare any MTR polymorphisms with MTHFR and MTRR genetic results. 				
Amino Acid Codon Rs Number: rs1805087			• Evaluate homocysteine, SAM/SAH ratio, and monitor biomarkers for vitamin B-12 and folate.					
Location: Chromosome 1q43			 Ensure adequate dietary intake of folate and vitamin B-12. 					
* Frequency:								
Population Category	AA	A G	GG					
EUR	69%	30%	1%	References				
EAS	72%	25%	3%	1. Ho V, et al. <i>Genes Nutr.</i> 2013;8(6):571-580. 2. Wang W, et al. <i>Genet Test Mol Biomarkers</i> , 2016;20(6):297-303.				
AFR	47%	42%	11%	 Klerk M, et al. <i>Chromb Res.</i> 2003;110(2-3):87-91. Doolin MT, et al. <i>Am. I. Hum Genet</i>. 2002;71(5):1222, 1226. 				
AMR	65%	33%	2%	 Douint MT, et al. Am o than Center 2002, 1(3), 1222-1220. Bleich S, et al. <i>Epigenomics</i>. 2014;6(6):585-591. 				
SAS	42%	47%	11%	 Hosseini M. <i>Pol J of Pathol</i>. 2013;64(3):191-195. Jiang-hua Q. et al. <i>Tumour Biol</i>. 2014:35(12):11895-11901. 				

47% 11% 7. Jiang-hua Q, et al. *Tumour Biol*. 2014;35(12):11895-11901.

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

Methodology: DNA Sequencing

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

vietnodology: DNA S		777		E 40 methylenetetrehydrefelete reductees		
IVI I				5,10-methylenetetranydrofolate reductase		
Yoı Allele 1	ur Genot	ype: Allele	2	methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). This step activates folate to be used for homocysteine (Hcy) conversion to methionine, instead of nucleotide synthesis.		
С		С		 Health Implications The C677T polymorphism downregulates enzymatic activity, which can limit methylation reactions in the body. The C677T polymorphism results in an analysis of the body. 		
Wild Type -		Wild Ty	pe -	increased risk of high homocysteine and an increased tendency for lower folate levels. ^{1,2}		
Pot	ential Impa	ict:				
No Do	wnregi	ulation		• Homozygosity for 677 (+/+) results in 60-70% reduction in MTHFR enzyme activity.		
Genotypes		Amino A	cid			
СС		Ala Ala	а	Lower levels of B-vitamin and folate increase the risk of elevated homocysteine		
СТ		Ala Va	al	related to MTHFR SNPs. ²		
		val va	31	 Homozygous C677T subjects have higher Hcy levels, while heterozygous subjects have mildly raised Hcy levels compared to controls.⁴ 		
Amino Acid Pos	ition: 22	22				
Alanin	e to Val	ine		 MTHFR C677T SNPs have been associated with many disease processes including: 		
$cCc \rightarrow cTc$			 Cardiovascular disease ⁵⁻⁷ Depression and schizophrenia ^{8,9} Increased risk of birth defects and Down's syndrome ¹⁰ 			
DNA Position: 894						
SNP			Psoriasis			
*				 Diabetes Parkinson's disease 		
TCTGCGGGA G	(CorT)	CGATTT	CATC	• Various cancers ⁴		
L				Clinical Considerations		
Amir	no Acid Co	don		 Ensure adequate intake of dark-green leafy vegetables and other B vitamin-rich foods 		
Rs Number: rs1	801133					
Location: Chror	nosome 1	p36.22		• Evaluate homocysteine, SAM, and SAH levels.		
				Supplementation with methylated folate and folate-rich foods may help lower Hcy		
				and mitigate risk. ¹¹		
* Frequency:				• Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors).		
Population Category	сс	СТ	тт	References 1. Yang Q, et al. Am J Clin Nutr. 2012;95(5):1245-1253. 2. Garcia-Minguillan C L et al. Canes Nutr. 2014;9(6):435		
EUR	47%	44%	9%	 Weisberg IS, et al. <i>Atherosclerosis</i>. 2001;156(2):409-415. Liew S-C. et al. <i>Fur J Med Genet</i>. 2015;58(1):1-10. 		
EAS	37%	47%	16%	 Zhang P, et al. <i>Angiology</i>. 2015;66(5):422-432. Yang KM, et al. <i>Bigmed Rep</i>. 2014;2(5):600-708. 		
AFR	81%	19%	<1%	 7. Cui T. Int J Neurosci. 2014. 7. Vi at a Rest Manager Mathematical Products in 2010 10 70 05 		
AMR	32%	52%	16%	 wu YL, et al. <i>Prog iveuropsychopnarmacol Biol Psychiatry</i>. 2013;46:78-85. Hu CY, et al. <i>J Neural Transm (Vienna)</i>. 2015;122(2):307-320. 		
SAS	68%	30%	2%	10. Yadav U, et al. <i>Metab Brain Dis</i> . 2015;30(1):7-24. 11. Zhao M, et al. <i>Stroke</i> . 2017;48(5):1183-1190.		
*Population frequent EUR (European):	ncy data is Americans	from 1000 with Northe	GENOME	S project as sourced from NCBI dbSNP. The population categories are listed below: estern European Ancestry, Toscani, Finnish, British, Spanish		

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Allele 2

Variant +

Glu Glu

Glu Ala

Ala Ala

MTHFR A1298C

Your Genotype:

Potential Impact:

Downregulation

Glutamate to Alanine

SNP

ACCAGTGAA **G(A** or **C) A** AGTGTCTTT

Amino Acid Codon

 $GAA \rightarrow GCA$

Methodology: DNA Sequencing

Allele 1

Variant +

Genotypes

ΑA AC

CC

DNA Position: 1515

Rs Number: rs1801131

Location: Chromosome 1p36.22

Amino Acid Position: 429

- · Evaluate homocysteine, SAM, and SAH levels.
- Supplementation with methylated folate and folate-rich foods may help lower Hcy and mitigate risk.13
- Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors).

* Frequency:			
Population Category	AA	AC	СС
EUR	43%	45%	12%
EAS	63%	33%	4%
AFR	78%	21%	1%
AMR	62%	34%	4%
SAS	39%	44%	17%

Refer	en	ce	s

- 1. Isotalo PA, et al. Am J Hum Genet. 2000;67(4):986-990.
- 2. van der Put NM, et al. Am J Hum Genet. 1998;62(5):1044-1051.
- 3. Weisberg IS, et al. Atherosclerosis. 2001;156(2):409-415.
- 4. Kang S, et al. J Clin Neurosci. 2014;21(2):198-202.
- 5. Lv Q, et al. Genet Mol Res. 2013;12(4):6882-6894.
- 6. Zhang MJ, et al. Cerebrovasc Dis. 2014;38(6):425-432.
- 7. Eloualid A, et al. *PloS one*. 2012;7(3):e34111.
- 8. Shen O, et al. Ann Hum Genet. 2012;76(1):25-32.
- 9. Xuan C, et al. Sci Rep. 2014;4:7311.
- 10. Qi X, et al. Tumour Biol. 2014;35(3):1757-1762.
- 11. Qi YH, et al. Clin Res Hepatol Gastroenterol. 2014;38(2):172-180.
- 12. Qin X, et al. PloS one. 2013;8(2):e56070.
- 13. Zhao M, et al. Stroke. 2017;48(5):1183-1190.

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

Methodology: DNA S	Sequencing							
CO	COMT V158M			Catechol-O-methyltransferase				
Yo	Your Genotype:		0	Catechol-O-Methyltransferase (COMT) is a key enzyme involved in the deactivation of catechol compounds including catecholamines, catechol estrogens, catechol drugs such as L-DOPA, and various chemicals and toxins such as any hydrocarbons				
Allele 1		Allele	2	Health Implications				
G		Α		 COMT polymorphisms result in decreased enzyme activity. Individuals with COMT SNPs may have an increased risk of inefficient methylation of catecholamines, 				
Wild Type -		Variant	+	estrogens, and toxins. ^{1,2}				
Po	tential Impa	act:		- The meet common construct of COMT in meet constant is hotorogy (+/)				
Dow	nregul	ation		 The most common genotype of COMT in most populations is neterozygous (+/-). Individuals with a homozygous positive (+/+) genotype for COMT have a 3-4-fold reduction in COMT activity. 				
Genotypes		Amino A	cid					
GG		Val Va	al - t	• COMT polymorphisms have been implicated in mood disturbances such as				
AA		Met M	et	anxiety, panic disorder, eating disorder, aggressiveness, anger, alcoholism, and severity of bipolar disorder. ³⁻⁵				
Amino Acid Pos Valine GTC	 sition: 15 e <i>to Meth</i> G →A⊤(58 nionine G		 COMT polymorphism has been implicated in risk of breast cancer, particularly in women with prolonged estrogen exposure;^{6,7} or in women with low folate and high homocysteine.⁸ Also, COMT SNPs have been shown to correlate with higher estrogen levels with estrogen replacement therapy.⁹ 				
DNA Position: 721			as well. ^{10,11}					
SNP ▼			Clinical Considerations					
TTTCGCTGGC (G or A)TG AAGGACAA			Evaluate methylation pathway to locate any potential backup.					
			• Ensure adequate B6, B12, folate, magnesium, betaine, and methionine to ensure					
- A mi	na Aaid Ca	don		adequate SAM production.				
Ami		uun		• SAM-e supplementation may be considered, as it is the cofactor for COMT,				
Rs Number: rs4	4680			 Nowever, this therapy is contraindicated in bipolar disorder. Minimize stress, since catecholamine levels may already be high. Make sure to appropriately monitor estrogen levels and estrogen metabolites, especially if your patient is on estrogen replacement therapy. Consider additional antioxidant support, especially if low levels of glutathione are 				
Location: Chro	mosome 3	38.p12						
				reported.				
* Frequency:								
Population	~~			References				
Category	GG	GA	AA	 Mannisto et al. <i>Pharmacol Rev.</i> 1999;51(4):593-628. 				
EUR	22%	53%	25%	 Woo JM, et al. Am J Psychol. 2002;159(10):1785-1787. Ruiescu D. et al. Biol Psychiatry. 2003;54(1):34-39. 				
EAS	43%	47%	10%	5. Papolos DF, et al. <i>Mol Psychiatry</i> . 1998;3(4):346-349.				
	16%	15%	0%	 Huang CS, et al. <i>Cancer Res.</i> 1999;59(19):4870-4875. Lavigne JA, et al. <i>Cancer Res.</i> 1997;57(24):5493-5497. 				
	5/0/	270/	970 90/	8. Goodman JE, et al. <i>Carcinogenesis</i> . 2001;22(10):1661-1665.				
	54%	31%	0%	10. Gursoy S, et al. <i>Rheumatolint</i> . 2003;23(3):104-107.				
SAS	37%	41%	22%	11. Emin Erdal M, et al. <i>Brain Res Mol Brain Res</i> . 2001;94(1-2):193-196.				
*Population freque	ncy data is	from 1000	GENOME	S project as sourced from NCBI dbSNP. The population categories are listed below:				

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

Commentary

This test has been developed and its performance characteristics determined by Genova Diagnostics, Inc. It has not been cleared by the U.S. Food and Drug Administration.

Commentary is provided to the practitioner for educational purposes, and should not be interpreted as diagnostic or treatment recommendations. Diagnosis and treatment decisions are the responsibility of the practitioner.

The accuracy of genetic testing is not 100%. Results of genetic tests should be taken in the context of clinical representation and familial risk. The prevalence and significance of some allelic variations may be population specific.

Any positive findings in your patient's test indicate genetic predisposition that could affect physiologic function and risk of disease. We do not measure every possible genetic variation. Your patient may have additional risk that is not measured by this test. Negative findings do not imply that your patient is risk-free.

DNA sequencing is used to detect polymorphisms in the patient's DNA sample. The sensitivity and specificity of this assay is <100%.